skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cha, Youngsu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A recent experiment by Kim’s group from the University of Nevada, Las Vegas, has shown the possibility of actuating ionomer cilia in salt solution. When these actuators are placed between two external electrodes, across which a small voltage is applied, they move toward the cathode. This is in stark contrast with ionic polymer metal composites, where the same ionomers are plated by metal electrodes but bending occurs toward the anode. Here, we seek to unravel the factors underlying the motion of ionomer cilia in salt solution through a physically based model of actuation. In our model, electrochemistry is described through the Poisson–Nernst–Planck system in terms of concentrations of cations and anions and voltage. Through finite element analysis, we establish that Maxwell stress is the main driving force for the motion of the cilia. This study constitutes a first effort toward understanding the motion of ionomer cilia in salt solution, which, in turn, may help elucidate the physical underpinnings of actuation in ionic polymer metal composites. 
    more » « less
  2. Abstract A recent experiment by Kim’s group from the University of Nevada, Las Vegas has demonstrated the possibility of actuating ionomer cilia in salt solution. When these actuators are placed between two external electrodes, across which a small voltage is applied, they move toward the cathode. This is in stark contrast with the case of ionic polymer metal composites, where these ionomers are plated by metal electrodes and bending occurs towards the anode. Here, we seek to unravel the factors underlying the motion of ionomer cilia in salt solution through a physically-based model of actuation. In our model, electrochemistry is described through the Poisson-Nernst-Planck system in terms of concentrations of cations and anions and voltage, which is solved through the finite element method. Based on computer simulations, we establish that Maxwell stress is the main driving force for the motion of the cilia. 
    more » « less